
Exascale Computing:
More and Moore?

Kathy Yelick
Associate Laboratory Director for Computing Sciences

and NERSC Center Director
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

NERSC Facility Leads DOE in Scientific
Computing Productivity

NERSC computing for science
•  4000 users, 500 projects
•  1500 publications per year
• Outstanding user services, computing

and data systems

Systems designed for science
•  1.29 Petaflop Hopper system
• Best application performance per $

and per Watt
• Designed for reliability and productivity

2	

Exascale: Who Needs It?

Fusion: Simulations
of plasma properties
to ITER scale model

Combustion:
complete predictive
engine simulation

Astronomy: origins
of the universe

Sequestration:
Understanding fluid
flow & chemistry

Materials: solar panels
to database of
materials-by-design.

Climate: Resolve
clouds (1km scale) &
model mitigations

Protein structures:
From Biofuels to
Alzheimers

Every field needs more computing!

1) To quantify and reduce uncertainty in simulation
and to analyze the data sets from experimental
devices (increase number of simulations)

2) Analyze data from experiments and simulations

Computing Growth is Not Just
an HPC Problem

4

The Expectation Gap

Microprocessor Performance “Expectation Gap” over Time
(1985-2020 projected)

Expectation Leads to
Exascale: NERSC Roadmap

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
120 TF Sustained, 1.29 PF Peak

N7 ~3-5 PF in OSF

N8 50 PF

N10
1 EF

P
ea

k
Te

ra
flo

p/
s

5

NERSC performance has traditionally grown at 10x every 3-4 years

N9 250 PF

Life Cycle Economics

6

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

$450,000

0 1 2 3 4 5 6

A
nn

ua
l C

os
t

Year

Initial purchase 3-year

Initial purchase 4-year

Initial purchase 5-year

Replacement cost 3-year

Replacement cost 4-year

Replacement cost 5-year

Assumes $1M purchase
cost year 0; 5% interest;
6% maintenance; $0.10/
KWhr

Initial purchase lines show
annual payments for
system, maintenance
and power

Replacement cost lines
show first year cost of
equivalent SSP

Cases shown for 3-, 4- and
5-year leases

Analysis by
Jeff Broughton, NERSC

Exascale for Thousands of
Users

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

F
ra

n
k
li
n

C
a
rv

e
r/

M
a
g

e
ll
a
n

H
o

p
p

e
r

$
 p

e
r

co
re

-h
o

u
r

Center
SysAdmin
Power & cooling
Purchase & Maintenance

Old-HPC Cluster New-HPC

•  Minimum cost per core (or app flop) are:
–  Newest machines with largest core count per node (power)
–  Largest machine: amortize personnel costs

•  But commercial clouds are slower & more expensive
–  Price not dropping with Moore’s Law (18% in 5 years)
–  6-7x cost to buy NERSC compute + storage in 2011 cloud

0

4

8

12

16

20

R
un

tim
e

R
el

at
iv

e
to

 S
up

er
co

m
pu

te
r Commercial Cloud

53x

 ~

The Exascale Challenge

Energy Efficiency

8 8

Energy Cost Challenge for
Computing Facilities

At ~$1M per MW, energy costs are substantial
•  1 petaflop in 2010 will use 3 MW
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling
•  1 exaflop in 2018 at 20 MW is DOE target

goal

usual
scaling

2005 2010 2015 2020

9

PUE of Data Centers

10

New
Design

PUE = overhead
 facility power .
computer power

Current
Facility

But is this what we
want to measure?

Measuring Efficiency
•  For Scientific Computing

centers, the metric should be
science output per Watt, if
only we could measure that

•  If we measure productivity
by publications…

•  NERSC in 2010 ran at 450
publications per MW-year

•  Next best: application
performance per Watt

Reducing power is about
architecture & process technology

•  Memory (2x-5x)
–  New memory interfaces (optimized memory control and xfer)
–  Extend DRAM with non-volatile memory

•  Processor (10x-20x)
–  Reducing data movement (functional reorganization, > 20x)
–  Domain/Core power gating and aggressive voltage scaling

•  Interconnect (2x-5x)
–  More interconnect on package
–  Replace long haul copper with integrated optics

•  Data Center Energy Efficiencies (10%-20%)
–  Higher operating temperature tolerance
–  480V to the rack and free air/water cooling efficiencies

Slide source: Mark Seager (LLNL)

Anticipating and Influencing
the Future

Hardware Design

13 13

Potential Exascale System
Architecture Targets

System
attributes

2010 “2015” “2018”

System peak 2 Peta 200 Petaflop/sec 1 Exaflop/sec

Power 6 MW 15 MW 20 MW

System memory 0.3 PB 5 PB 32-64 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size
(nodes)

18,700 50,000 5,000 1,000,000 100,000

Total Node
Interconnect BW

1.5 GB/s 20 GB/sec 200 GB/sec

MTTI days O(1day) O(1 day)

2 “swimlanes”: fast cores (>2 GHz) and slow cores (<.5 GHz) eliminated

New Processor Designs are
Needed to Save Energy

•  Server processors have been designed for
performance, not energy
– Graphics processors are 10-100x more efficient
– Embedded processors are 100-1000x
– Need manycore chips with thousands of cores

15

Cell phone processor
(0.1 Watt, 4 Gflop/s)

Server processor
(100 Watts, 50 Gflop/s)

16 5/4/11

The Amdahl Case for
Heterogeneity

0	

50	

100	

150	

200	

250	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	

A
sy
m
m
et
ri
c	

Sp
ee
du

p	

Size	
 of	
 Fat	
 core	
 in	
 Thin	
 Core	
 units	

F=0.999	

F=0.99	

F=0.975	

F=0.9	

F=0.5	

(256 cores)
(193 cores)

(1 core)

F is fraction of time in parallel; 1-F is serial

Chip with area for 256 thin cores

A Chip with up to 256 “thin” cores and “fat” core that
uses some of the some of the thin core area

256 small cores 1 fat core

Assumes
speedup for
Fat / Thin =
Sqrt of Area
advantage

Heterogeneity Analysis by: Mark Hill, U. Wisc

Energy Efficiency of
Applications

Gainestown
Barcelona
Victoria Falls

Cell Blade
GTX280

Cache-based

GTX280-Host

Local store-based

K. Datta, M. Murphy,
V. Volkov, S. Williams ,
 J. Carter, L. Oliker.
 D. Patterson, J. Shalf,
 K. Yelick, BDK11 book

P
ow

er
 E

ffi
ci

en
cy

P
er

fo
rm

an
ce

Value of Local Store Memory

•  Unit stride access is as important as cache utilization on
processors that rely on hardware prefetch
–  Tiling in unit stride direction is counter-productive: improves reuse, but

kills prefetch effectiveness
•  Software controlled memory gives programmers more control

–  Spend bandwidth on what you use; bulk moves (DMA) hide latency

Joint work with Shoaib Kamil, Lenny Oliker, John
Shalf, Kaushik Datta	

Understanding Node
Performance: Roofline Model

peak DP	

mul / add imbalance	

w/out SIMD	

w/out ILP	

0.5	

1.0	

1/8	

actual flop:byte ratio	

at
ta

in
ab

le
 G

flo
p/

s	

2.0	

4.0	

8.0	

16.0	

32.0	

64.0	

128.0	

256.0	

1/4	

 1/2	

 1	

 2	

 4	

 8	

 16	

Generic Machine
  The flat room is

determined by
arithmetic peak and
instruction mix

  The sloped part of the
roof is determined by
peak DRAM bandwidth
(STREAM)

  X-axis is the
computational intensity
of your computation

See Sam Williams
PhD Thesis & papers

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

double-precision peak

double-precision peak

Arithmetic Intensity

A
tta

in
ab

le
 G

flo
p/

s

2.2x Measured BW

 & Roofline

Relative Performance
Expectations

1.7x 7-point Stencil

6.7x peak

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

Relative Performance
Across Kernels

What Heterogeneity Means
to Me

•  Case for heterogeneity
–  Many small cores are needed for energy efficiency and

power density; could have their own PC or use a wide SIMD
–  Need one fat core (at least) for running the OS

•  Local store, explicitly managed memory hierarchy
–  More efficient (get only what you need) and simpler to

implement in hardware
•  Co-Processor interface between CPU and

Accelerator
–  Market: GPUs are separate chips for specific domains
–  Control: Why are the minority CPUs in charge?
–  Communication: The bus is a significant bottleneck.
–  Do we really have to do this? Isn’t parallel programming

hard enough

Co-Design Hardware &
Software

•  Green Flash Demo
•  CSU atmospheric model ported to

low-power core design
–  Dual Core Tensilica processors running

atmospheric model at 25MHz
–  MPI Routines ported to custom Tensilica

Interconnect
•  Memory and processor Stats

available for performance analysis
•  Emulation performance advantage

–  250x Speedup over merely function
software simulator

•  Actual code running - not
representative benchmark

Icosahedral mesh for
algorithm scaling

CoDEx: Co-Design for
Exascale

Co-design for science applications (kernels or full)
•  “GreenWave” example

– Core (XTensa in-order core)
– Cache hierarchy
– Network On Chip (NoC)
– Interconnect

24

Seismic Time Migration algorithm (RTM) shown

Design hardware to match science needs and
algorithms to match hardware

7 Co-Design Centers identified in DOE program

PI: John Shalf, LBNL

Hardware

Applications & Models

Algorithms
Software

RAMP: Enabling Manycore
Architecture Research

25

Chisel Design Description

C++ code FPGA Verilog ASIC Verilog

C++ Simulator

C++ Compiler

Chisel Compiler

FPGA
Emulation

FPGA Tools

GDS Layout

ASIC Tools

•  ISIS: rapid, accurate FPGA emulation of manycore chips
•  Spans VLSI design and simulation and includes chip fab

–  Trains students in real design trade-offs, power and area costs
•  Mapping RTL to FPGAs for algorithm/software co-design

–  100x faster than software simulators and more accurate

ISIS Hardware description language based on Scala,
modern OO/Functional language that compiles to JVM. !

ISIS builds on Berkeley RAMP project. Ramp
Gold shown here which models 64 cores of
SPARC v8 with shared memory on $750
board. Has hardware FPU, MMU; boots OS.

PIs: John Wawrzynek and Krste Asanovic, UC Berkeley

The Future of Software Design
and

Programming Models

•  Memory model
•  Control model
•  Resilience

26

Memory is Not Keeping
Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

27

Question: Can you double concurrency without doubling memory?

Source: IBM

27

What’s Wrong with Flat
MPI?

•  We can run 1 MPI process per core
–  This works now for Quad-Core on Franklin

•  How long will it continue working? (circa 2008)
–  4 - 8 cores? Probably. 128 - 1024 cores? Probably not.

•  What is the problem?
–  Latency: some copying required by semantics
– Memory utilization: partitioning data for separate address

space requires some replication
•  How big is your per core subgrid? At 10x10x10, over 1/2 of the

points are surface points, probably replicated
– Memory bandwidth: extra state means extra bandwidth
– Weak scaling will not save us -- not enough memory per core

•  This means a “new” model for most NERSC users

28

0

2

4

6

8

10

12

14

0

100

200

300

400

500

600

700

1 2 3 6 12

M
em

or
y

pe
r n

od
e

(G
B

)

Ti
m

e
(s

ec
)

cores per MPI process

fvCAM
 (240 cores on Jaguar)

Time

Memory

Develop Best Practices in
Multicore Programming

Hybrid Programming is key to saving memory
(2011) and sometimes improves performance

29

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

M
em

or
y

pe
r n

od
e

(G
B

)

Ti
m

e
(s

ec
)

cores per MPI process

PARATEC
 (768 cores on Jaguar)

Time

Memory

Why Use 2 Programming
Models When 1 Will Do?

Global address space: thread may directly read/write
remote data

Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce
!

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"
•  Affinity control for shared and distributed memory
•  No less scalable than message passing
•  Permits sharing, unlike message passing
•  One-sided communication: never say “receive”

Avoiding Synchronization in
Communication

•  Two-sided message passing (e.g., MPI) requires
matching a send with a receive to identify memory
address to put data
–  Wildly popular in HPC, but cumbersome in some applications
–  Couples data transfer with synchronization

•  Using global address space decouples synchronization
–  Pay for what you need!
–  Note: Global Addressing ≠ Cache Coherent Shared memory

address

message id

data payload

data payload
one-sided put message

two-sided message

network
 interface

memory

host
CPU

Joint work with Dan Bonachea, Paul Hargrove,
Rajesh Nishtala and rest of UPC group	

32

Avoid Synchronization
from Applications

Computations as DAGs
View parallel executions as the directed acyclic graph of the
computation

Slide source: Jack Dongarra	

Event Driven Execution of LU

•  Ordering needs to be imposed on the schedule
•  Critical operation: Panel Factorization

–  need to satisfy its dependencies first
–  perform trailing matrix updates with low block numbers first
–  “memory constrained” lookahead

•  General issue: dynamic scheduling in partitioned memory
–  Can deadlock memory allocator!

some edges omitted

34

 DAG Scheduling Outperforms
Bulk-Synchronous Style

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding
–  New problem in partitioned memory: allocator deadlock
–  Can run on of memory locally due tounlucky execution order

PLASMA on shared memory UPC on partitioned memory

PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands	

To Virtualize or Not

•  The fundamental question facing in parallel
programming models is:

 What should be virtualized?
•  Hardware has finite resources

–  Processor count is finite
–  Registers count is finite
–  Fast local memory (cache and DRAM) size is finite
–  Links in network topology are generally < n2

•  Does the programming model (language+libraries)
expose this or hide it?
–  E.g., one thread per core, or many?

•  Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

•  But one thread is better for deep memory hierarchies

•  How to get the most out of your machine?

Reasons to Virtualize

•  Simplicity for Programmer
•  Potential to hide problems:

–  load imbalance in hardware, e.g., jitter
–  faults
– wierd memory structures (local stores)

•  Effective use of system resources
–  in a space-shared environment
– multiple jobs sharing resources

Virtualization of
Processors
•  A parallel computation is

defined by its task graph
•  Many possible graphs,

depending on how much
parallelism is exposed

•  Where does the mapping of the
graph to a particular number of
processors happen?
–  The compiler: auto parallelization,

NESL, ZPL
–  The runtime system : Cilk, Charm

++ (sometimes), OpenMP, X10
–  The programmer: MPI, UPC

Irregular vs. Regular
Parallelism

•  Computations with known task graphs can be
mapped to resources in an offline manner (before
computation starts)
–  Regular graph: By a compiler (static) or runtime (semi-static)
–  Irregular graphs: By a DAG scheduler

–  No need for online scheduling
•  If graphs are not known ahead of time (structure,

task costs, communication costs), then dynamic
scheduling is needed
–  Task stealing / task sharing
–  Demonstrated on shared memory

•  Conclusion: If your task graph is dynamic, the
runtime needs to be, but what if it static?

Load Balancing with Locality

•  Locality is important:
–  When memory hierarchies are deep
–  When computational intensity is low (expensive move cost cannot be

amortized)
•  Most (all?) successful examples of locality-important applications/

machines use static scheduling
–  Unless they have a irregular/dynamic task graph so it is impossible

•  Two extremes are well-studied
–  Dynamic parallelism without locality
–  Static parallelism (with threads = processors) with locality

•  Dynamic scheduling (task stealing) with locality control can cause
problems
–  Locality control can cause non-optimal task schedule, which can blow

up memory use (breadth vs. depth first traversal)
–  Can run out of memory locally when you don’t globally

Efficiency Programming
Model: Phalanx

•  Invoke functions on set of cores and set of memories
•  Hierarchy of memories

–  Can query to get (some) aspects of the hierarchical structures
•  Functionally homogeneous cores (on Echelon)

–  Can query to get (performance) properties of cores
•  Hierarchy of thread blocks

–  May be aligned with hardware based on queries

Memory

Memory

Memory

Proc Mem Proc Mem
• • •

Proc Mem Proc Mem
• • •

Echelon ProgSys Team: Michael Garland, Alex Aiken, Brad
Chamberlain, Mary Hall, Greg Titus, Kathy Yelick

Autotuning: Write Code
Generators

•  Autotuners are code generators plus search
algorithms to find best code

•  Avoids compiler problems of dependence analysis
and approximate performance models

  Functional portability
from C

  Performance portability
from search at install time

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Multiply

specialized
to n,m

BLAS = Basic Linear Algebra Subroutine: matrix multiply, etc.

BLAS
Library

Atlas
Autotuner:
code generator
+search

Performance of Autotuned Matrix Multiply
HP 712 / 80i

Recent Past Autotuners:
Sparse Matrices

•  OSKI: Optimized Sparse Kernel Interface
•  Optimized for: size, machine, and matrix structure
•  Functional portability from C (except for Cell/GPUs)
  Performance portability

from install time search and
model evaluation at runtime

  Later tuning, less opaque
interface

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Vector Mul
specialized

to n,m,
structure

See theses from Im, Vuduc, Williams, and Jain

OSKI
Library

OSKI
Autotuner:
code generator
+search

Performance on Median Matrix of Suite

Future: Improving Support for
Writing Autotuners!

•  Ruby class
encapsulates SG
pattern!
–  body of anonymous

lambda specifies filter
function!

•  Code generator
produces OpenMP !
–  ~1000-2000x faster than

Ruby!
–  Minimal per-call runtime

overhead!

class LaplacianKernel < Kernel
 def kernel(in_grid, out_grid)
 in_grid.each_interior do |point|
 in_grid.neighbors(point,1).each
 do |x|
 out_grid[point] += 0.2*x.val
 end
 end
end

VALUE kern_par(int argc, VALUE* argv, VALUE
self) {
unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)
private (t_6,t_7,t_8)
for (t_8=1; t_8<256-1; t_8++) {
 for (t_7=1; t_7<256-1; t_7++) {
 for (t_6=1; t_6<256-1; t_6++) {
 int center = INDEX(t_6,t_7,t_8);
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)]));
 ...
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)]));
;}}}
return Qtrue;}

Joint with Shoaib Kamil,
Armando Fox, John Shalf.

Resilience at Exascale

•  More analysis needed on what faults
are most likely and their impact
– Node / component failures, O(1 day)

•  Kills a job, hopefully not a system
– System wide outages, O(1 month)

•  Kills all jobs, O(hours) to restart
•  Weakest links: network, file system

•  How much to virtualize?
– Detection of errors visible on demand
– Automatic recovery: maybe

44

Errors Can Turn into
Performance Problems

•  Fault resilience introduces inhomogeneity in
execution rates (error correction is not instantaneous)

Slide source: John Shalf	

Algorithms to Optimize for
Communication

46 46

Where does the Power Go?

1

10

100

1000

10000

Pi
co

Jo
ul

es

now

2018

Intranode/MPI
Communication

On-chip / CMP
communication

Intranode/SMP
Communication

Choose Scalable
Algorithms

• Algorithmic gains in last decade have
far outstripped Moore’s Law

– Adaptive meshes
 rather than uniform
– Sparse matrices
 rather than dense
– Reformulation of
 problem back to basics

• Two kinds of scalability
– In problem side (n)
– In machine size (p)

• Example of canonical “Poisson” problem on n points:
– Dense LU: most general, but O(n3) flops on O(n2) data
– Multigrid: fastest/smallest, O(n) flops on O(n) data

Performance results: John Bell et al	

Communication-Avoiding
Algorithms

•  Sparse Iterative (Krylov Subpace) Methods
–  Nearest neighbor communication on a mesh
–  Dominated by time to read matrix (edges) from DRAM
–  And (small) communication and global

synchronization events at each step
•  Can we lower data movement costs?

–  Take k steps with one matrix read from
DRAM and one communication phase

•  Serial: O(1) moves of data moves vs. O(k)
•  Parallel: O(log p) messages vs. O(k log p)

•  Can we make communication provably optimal?
–  Communication both to DRAM and between cores
–  Minimize independent accesses (‘latency’)
–  Minimize data volume (‘bandwidth’)

Joint work with Jim
Demmel, Mark
Hoemman, Marghoob
Mohiyuddin

Bigger Kernel (Akx) Runs at Faster
Speed than Simpler (Ax)

Speedups on Intel Clovertown (8 core)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

“Monomial”	
 basis	
 [Ax,…,Akx]	
 	
 	

fails	
 to	
 converge	

	
 A	
 different	
 polynomial	
 basis	
 does	
 converge	

Communication-Avoiding
Krylov Method (GMRES)

Performance on 8 core Clovertown

Communication-Avoiding
Dense Linear Algebra

•  Well known why BLAS3 beats BLAS1/2: Minimizes
communication = data movement
–  Attains lower bound Ω (n3 / cache_size1/2) words moved in

sequential case; parallel case analogous
•  Same lower bound applies to all linear algebra

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…
–  Sequential or parallel
–  Dense or sparse (n3 ⇒ #flops in lower bound)

•  Conventional algs (Sca/LAPACK) do much more
•  We have new algorithms that meet lower bounds

–  Good speed ups in prototypes (including on cloud)
–  Lots more algorithms, implementations to develop

53

Research by Demmel, Anderson, Ballard, Carson, Dumitriu, Grigori, Hoemmen,
Holtz, Keutzer, Knight, Langou, Mohiyuddin, Schwartz, Solomonik, Williams,
Xiang,Yelick

Challenges to Exascale

1)  System power is the primary constraint
2)  Concurrency (1000x today)
3)  Memory bandwidth and capacity are not keeping pace
4)  Processor architecture is open, but likely heterogeneous
5)  Programming model heroic compilers will not hide this
6)  Algorithms need to minimize data movement, not flops
7)  I/O bandwidth unlikely to keep pace with machine speed
8)  Reliability and resiliency will be critical at this scale
9)  Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally
important across scales, e.g., 1000 1-PF machines

Performance Growth

General Lessons

•  Early intervention with hardware designs
•  Optimize for what is important:
 energy  data movement
•  Anticipating and changing the future

–  Influence hardware designs
–  Use languages that reflect abstract machine
–  Write code generators / autotuners
–  Redesign algorithms to avoid communication

•  These problems are essential for computing
performance in general

55

Thank You!

56

